

Contents

	multidirmap
	Status

	Installation

	Documentation

	Quick Start

	Features

	Use Cases

	Usage
	Creating / Updating a MultiDirMap

	Key Column Methods

	Row Elements

	Equality Testing

	Ordering

	Printing

	Performance
	Compared to dict

	Compared to bidict

	Compared to pandas DataFrame

	Reference
	multidirmap

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.2.0 (2019-07-12)

	0.1.0 (2018-07-28)

Indices and tables

	Index

	Module Index

	Search Page

multidirmap

Multidirectional map where an arbitrary number of columns can be used as keys.

Status

[image: Documentation Status]
 [https://readthedocs.org/projects/multidirmap][image: Travis-CI Build Status]
 [https://travis-ci.org/janrg/multidirmap][image: AppVeyor Build Status]
 [https://ci.appveyor.com/project/janrg/multidirmap][image: Coverage Status]
 [https://codecov.io/github/janrg/multidirmap][image: PyPI Package latest release]
 [https://pypi.org/project/multidirmap/][image: PyPI Wheel]
 [https://pypi.org/project/multidirmap/][image: Supported versions]
 [https://pypi.org/project/multidirmap/][image: Supported implementations]
 [https://pypi.org/project/multidirmap/][image: License]
 [https://raw.githubusercontent.com/janrg/multidirmap/master/LICENSE]

Installation

$ pip install multidirmap

Documentation

https://multidirmap.readthedocs.io/en/latest/

Quick Start

>>> from multidirmap import MultiDirMap
>>> crew = MultiDirMap(
 ["character", "portrayed_by", "role", "nicknames"],
 key_columns=2,
 data=[["Malcolm Reynolds", "Nathan Fillion", "Captain", ["Mal", "Captain Tight Pants"]],
 ["Zoë Washburne", "Gina Torres", "First Mate"],
 ["Hoban Washburne", "Alan Tudyk", "Pilot", "Wash"]])
>>> crew["Malcolm Reynolds"].role
Captain
>>> crew.portrayed_by["Nathan Fillion"].nicknames
["Mal", "Captain Tight Pants"]

Features

	As many columns as desired can be used as key columns for the mapping

	O(1) retrieval from any key column

	Internal consistency is maintained through any modifications to the contents

	Insertion order is maintained in the primary key column

	Built-in pretty printing of the mapping

Use Cases

Dictionaries are ubiquitous in Pyton and provide an extremely useful and fast
mapping from keys to values. Sometimes, a single, uni-directional mapping is not
enough, though, and while bidict [https://github.com/jab/bidict] extends
this functionality to a bidirectional mapping, multidirmap provides an
array-like datastructure where any number of columns can be used for O(1)
retrieval. In its simplest implementation (2 columns, one of which is a key
column), it essentially provides the same functionality as a dict, albeit with
additional overhead (don’t do that…). 2 columns that are both key columns
will behave somewhat like a bidict, albeit with slightly different syntax. But
multidirmap is significantly more flexible in that any number of key and
non-key columns can be used.
A somewhat similar effect could be achieved with pandas DataFrames, though these
(1) will not ensure uniqueness of keys, hence a retrieval may return any number
of rows, (2) use an array structure, hence retrieval is O(n) which for large
arrays can get very slow, and (3) require the installation of pandas, which
is a rather large library to include just for this feature.

Say we want to work with information from the Periodic Table of Elements, like

[["H", "Hydrogen", 1, [1, 2, 3]],
 ["He", "Helium", 2, [4, 3]],
 ["Li", "Lithium", 3, [7, 6]],
 ...
 ["Og", "Oganesson", 118, [295, 294]]]

where the columns indicate symbol, name, atomic number, and nucleon numbers of
isotopes respectively. The first three columns are obvious candidates for key
columns as they are by definition unique. multidirmap allows placing this
information in a unified datastructure where questions like “What are the
isotope nucleon numbers of Lithium?”, “What is the chemical element symbol of
Potassium?”, or “What is the name of the element with atomic number 46?” can
be asked with a simple syntax and O(1) retrieval. Any number of additional
key and non-key columns could be added.

The use case that prompted the development on this package involved the struct
module: For a binary interface I needed to convert back and forth between (1)
a string representation of the variable type, (2) an integer representation
of the variable type, (3) the struct format char, and (4) the size in bytes of
the variable. Again, 1-3 are obvious candidates for key columns, with 4 being
a non-key column. Without multidirmap, several separate dicts have to be used
to provide each needed mapping from one column to another and there is easy way
to ensure that these dicts remain consistent with each other through possible
changes.

Usage

Creating / Updating a MultiDirMap

>>> from multidirmap import MultiDirMap
>>> crew = MultiDirMap(
 ["character", "portrayed_by", "role", "nicknames"],
 key_columns=2,
 data=[["Malcolm Reynolds", "Nathan Fillion", "Captain", ["Mal", "Captain Tight Pants"]],
 ["Zoë Washburne", "Gina Torres", "First Mate"],
 ["Hoban Washburne", "Alan Tudyk", "Pilot", "Wash"]])

MultiDirMap takes three arguments:

	“columns” is required and is a list of names for the columns in the map.
The first column must be a key column and is below referred to as the
“primary key column”

	“key_columns” gives the number of columns (in the order in which they are
given in “columns” that should be key columns (and will only accept unique
and hashable values). It is an optional argument and defaults to len(columns)

	“data” gives the data with which to initialize the MultiDirMap and is optional

Note that

>>> my_map = MultiDirMap(columns, data=my_data)

is exactly equivalent to

>>> my_map = MultiDirMap(columns)
>>> my_map.update(my_data)

Data insertion order is maintained in the primary key column.

Accepted Data Formats

Data for the map can be provided in three different formats:

>>> crew.update([["Inara Serra", "Morena Baccarin", "Companion", "Ambassador"],
 ["Jayne Cobb", "Adam Baldwin", "Mercenary", "Hero of Canton"]])
>>> crew.update([{"character": "Kaywinnet Lee Frye", "portrayed_by": "Jewel Staite",
 "role": "Mechanic", "nicknames": "Kaylee"},
 {"character": "Simon Tam", "portrayed_by": "Sean Maher",
 "role": "Medic"}])
>>> crew.update({"River Tam": ["Summer Glau", None, "Méi-mei"],
 "Derrial Book": ["Ron Glass", "Shepherd", "Preacher"]})

Values for non-key columns are optional.

All values in key columns must be hashable, so

>>> crew.update([[["Yolanda", "Saffron", "Bridget"], "Christina Hendricks", "Grifter"]])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

Key Conflicts

In a normal Python dict, inserting an entry with a key that already exists
overwrites the existing entry. In a multidirectional mapping, things are a
little more complicated, so MultiDirMap.update() takes two additional
keyword arguments, "overwrite" and "skip_duplicates":

	“overwrite” (default: “primary” can take the values “none”, “primary”,
“secondary”, or “all” It indicates which key columns may be overwritten
(with “secondary” meaning all key columns other than the primary one). An
entry that has a value that is overwritten by an update will be completely
removed from the MultiDirMap

	“skip_duplicates” (default False) describes the behaviour when an entry is
encountered that may not be overwritten. If False, the update operation is
aborted and a DuplicateKeyError is raised. An aborted update will
never leave the map in a modified state, this includes the order of the
primary key column. So if the 10th entry in an update operation encounters a
conflict, the first 9 will not end up in the map either. If True, conflicting
entries will simply be skipped and all non-conflicting entries are inserted.

>>> crew.update([["Yolanda", "Christina Hendricks", "Grifter"]])
>>> crew.update([["Bridget", "Christina Hendricks", "Grifter"]], overwrite="none")
Traceback (most recent call last):
...
DuplicateKeyError: One or more keys in ["Bridget", "Christina Hendricks", "Grifter"] were duplicates
>>> crew.update([["Bridget", "Christina Hendricks", "Grifter"]], overwrite="primary")
>>> crew["Bridget"].portrayed_by
Christina Hendricks
>>> crew["Yolanda"]
Traceback (most recent call last):
...
KeyError: "Yolanda"

Note that an entry that overwrites another one, can “free up” keys in other
columns for subsequent updates. This is not currently checked for within an
update operation, so it is possible that two consecutive updates with
overwrite="primary" or overwrite="secondary will succeed where
a combined operation would raise a DuplicateKeyError.

Key Column Methods

Under the hood, all key columns are stored as dicts and support dict methods
with one important caveat: Key Columns in a MultiDirMap are read-only. This
means that any of the following will raise a TypeError:

>>> crew.portrayed_by["Nathan Fillion"] = [...]
>>> del crew.portrayed_by["Nathan Fillion"]
>>> crew.portrayed_by.clear()
>>> crew.portrayed_by.pop("Nathan Fillion")
>>> crew.portrayed_by.popitem()
>>> crew.portrayed_by.setdefault("Nathan Fillion", default=None)
>>> crew.portrayed_by.update(...)

On the other hand, all of the following methods will work as expected:

>>> crew.portrayed_by["Nathan Fillion"]
>>> for name in crew.portrayed_by: ...
>>> crew.portrayed_by.get("Nathan Fillion")
>>> crew.portrayed_by.keys()
>>> crew.portrayed_by.values()
>>> crew.portrayed_by.items()

Operating directly on the MultiDirMap is equivalent to operate on its primary
key column, with the exception that writing access is permitted, so

>>> crew["Malcolm Reynolds"]
>>> crew.character["Malcolm Reynolds"]

are equivalent, but in the case of

>>> del crew["Malcolm Reynolds"]
>>> del crew.character["Malcolm Reynolds"]

the first one will work, while the second one will raise a TypeError.

Note that for modifying methods other than update(), behaviour will
always correspond to overwriting of primary key columns being permitted and
overwriting of secondary key columns being forbidden.

Row Elements

Accessing an entry in a key column returns a custom object called a
MultiDirMapRow. This object contains all data of the row (including
the key that was used to retrieve this element). So it is entirely possible
(though of questionable utility) to write

>>> crew["Malcolm Reynolds"].character
Malcolm Reynolds

All attributes can be accessed with dot notation. Furthermore, a
MultiDirMapRow has the methods aslist() and asdict():

>>> crew["Malcolm Reynolds"].aslist()
["Malcolm Reynolds", "Nathan Fillion", "Captain", ["Mal", "Captain Tight Pants"]]
>>> crew["Malcolm Reynolds"].asdict()
{"character": "Malcolm Reynolds", "portrayed_by": "Nathan Fillion",
 "role": "Captain", "nicknames": ["Mal", "Captain Tight Pants"]}

Attributes can be modified and changes are propagated to the rest of the map
(subject to not conflicting with existing secondary keys):

>>> mal = crew["Malcolm Reynolds"]
>>> mal.portrayed_by = "Alan Tudyk"
Traceback (most recent call last):
...
DuplicateKeyError: ...
>>> mal.nicknames = None
>>> crew.portrayed_by["Nathan Fillion"].aslist()
["Malcolm Reynolds", "Nathan Fillion", "Captain", None]

Equality Testing

Two MultiDirMaps will compare equal if their column names, number of key
columns, and entries are identical. Order - while preserved in the primary key
column regardless of Python version - does not affect equality testing.

Ordering

Reordering the Secondary Key Columns

While the primary key column always maintains insertion order, the order of the
secondary key columns can be scrambled by insertions that remove existing
elements by overwriting some of their keys. Consistent ordering between primary
and secondary key columns can be restored by calling reorder_secondary_keys()
on a map. Note that this can be slow on large maps as it will recreate all
secondary dictionaries.

Sorting a MultiDirMap

An existing map can be sorted with an arbitrary comparison function:

>>> crew.sort(key=lambda entry: entry.portrayed_by, reverse=True)
>>> print(crew)
character* portrayed_by* role nicknames
===
River Tam Summer Glau None Méi-mei
...
Hoban Washburne Alan Tudyk Pilot Wash

	“key” is the function that serves as the key for the comparison
function. If no key is given, sorting is done by the entries in the
primary key column

	“reverse” (default False) reverses the sorting.

Note that sorting can be slow on large maps as it will recreate all key dictionaries.

Printing

Printing a MultiDirMap will output it as a table with key columns marked by an
asterisk. Formatting parameters can be set by

MultiDirMap.print_settings(max_width=80, max_cols=4, max_col_width=20)

	“max_width” sets the maximum total width of the table in characters

	“max_cols” set the maximum number of columns that will be displayed.
Supernumerary columns will be replaced by “…”

	“max_col_width” sets the maximum width of each column in characters. Entries
that are too long will be cropped.

>>> print(crew)
character* portrayed_by* role nicknames
===
Malcolm Reynolds Nathan Fillion Captain ['Mal', 'Captain Ti
Zoë Washburne Gina Torres First Mate None
Hoban Washburne Alan Tudyk Pilot Wash
Inara Serra Morena Baccarin Companion Ambassador
Jayne Cobb Adam Baldwin Mercenary Hero of Canton
Kaywinnet Lee Frye Jewel Staite Mechanic Kaylee
Simon Tam Sean Maher Medic None
River Tam Summer Glau None Méi-mei
Derrial Book Ron Glass Shepherd Preacher
>>> crew.print_settings(max_cols=3, max_col_width=15)
>>> print(crew)
character* portrayed_by* ... nicknames
===
Malcolm Reynold Nathan Fillion ... ['Mal', 'Captai
Zoë Washburne Gina Torres ... None
Hoban Washburne Alan Tudyk ... Wash
Inara Serra Morena Baccarin ... Ambassador
Jayne Cobb Adam Baldwin ... Hero of Canton
Kaywinnet Lee F Jewel Staite ... Kaylee
Simon Tam Sean Maher ... None
River Tam Summer Glau ... Méi-mei
Derrial Book Ron Glass ... Preacher

Performance

Information below is provided only to give an idea of what kind of performance
can be expected from a MultiDirMap. It is not meant as a replacement for any
of the data structures mentioned below, but its flexibility affords it some
overlap with them.

Compared to dict

A MultiDirMap with two columns, one of which is a key column, exhibits slightly
slower retrieval than Python’s built-in dict with significantly slower creation.
Do not use a MultiDirMap when a dict would suffice :-)

Compared to bidict

A MultiDirMap with two columns that are both key columns is slightly slower in
both retrieval and creation than a bidict [https://github.com/jab/bidict].

Compared to pandas DataFrame

A pandas DataFrame (which does not ensure uniqueness of keys) has significantly
faster creation than a MultiDirMap (since it is an array under the hood) but in
retrieval, a MultiDirMap vastly outperforms it, since the DataFrame retrieves on
O(n) as opposed to O(1).

Reference

	multidirmap

multidirmap

A multidirectional mapping with an arbitrary number of key columns.

	
class multidirmap.MultiDirMap(columns, key_columns=None, data=None)

	A multidirectional mapping with an arbitrary number of key columns.

	
clear()

	Clear all key dicts, thereby deleting all stored data.

	
get(key, default=None)

	Redirects to get() of the primary key dict.

	
items()

	Redirects to items() of the primary key dict.

	
keys()

	Redirects to keys() of the primary key dict.

	
pop(key, default=<object object>)

	Pop an entry from the mapping.

Entry is returned from the primary key dict and it as well as all
consequently orphaned entries are removed from the secondary key dicts.

	
popitem()

	Pop from the end of the primary key dict.

All consequently orphaned entries are removed from the secondary
key dicts.

	
print_settings(**kwargs)

	Change the print settings for __str__().

max_width gives the maximum width of the entire table.
max_cols gives the maximum number of columns.
max_col width gives the maximum width of each column.

	
reorder_secondary_keys()

	Refresh the order of the secondary key dicts.

This will recreate all secondary key dicts such that the keys
will be in the same order as the primary keys, as the secondary
key order can get scrambled when secondary entries are
overwritten.

	
sort(key=<function <lambda>>, reverse=False)

	Sort the map by the given key.

If no key is given, sorting is done by the entries in the primary
key column.

	
update(data, overwrite='primary', skip_duplicates=False)

	Update the map with the provided data.

overwrite can be “none”, “primary”, “secondary”, or “all” and determines
whether an entry can still be added when it conflicts with an existing
entry.
skip_duplicates determines whether a conflicting entry that will not
overwrite should be skipped. If False, an exception will be raised in
that situation and a rollback performed, so that the update() operation
does not change the state of the map.

	
values()

	Redirects to values() of the primary key dict.

	
exception multidirmap.DuplicateKeyError

	Raised when secondary key is not unique.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/janrg/multidirmap/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

MultiDirMap could always use more documentation, whether as part of the
official MultiDirMap docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/janrg/multidirmap/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up multidirmap for local development:

	Fork multidirmap [https://github.com/janrg/multidirmap]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/multidirmap.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/janrg/multidirmap/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Jan Greis - https://github.com/janrg

Changelog

0.2.0 (2019-07-12)

	Custom sorting

	Reordering of secondary keys

0.1.0 (2018-07-28)

	First release on PyPI.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 multidirmap	

Index

 C
 | D
 | G
 | I
 | K
 | M
 | P
 | R
 | S
 | U
 | V

C

 	
 	clear() (multidirmap.MultiDirMap method)

D

 	
 	DuplicateKeyError

G

 	
 	get() (multidirmap.MultiDirMap method)

I

 	
 	items() (multidirmap.MultiDirMap method)

K

 	
 	keys() (multidirmap.MultiDirMap method)

M

 	
 	MultiDirMap (class in multidirmap)

 	
 	multidirmap (module)

P

 	
 	pop() (multidirmap.MultiDirMap method)

 	
 	popitem() (multidirmap.MultiDirMap method)

 	print_settings() (multidirmap.MultiDirMap method)

R

 	
 	reorder_secondary_keys() (multidirmap.MultiDirMap method)

S

 	
 	sort() (multidirmap.MultiDirMap method)

U

 	
 	update() (multidirmap.MultiDirMap method)

V

 	
 	values() (multidirmap.MultiDirMap method)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 multidirmap

 		
 Status

 		
 Installation

 		
 Documentation

 		
 Quick Start

 		
 Features

 		
 Use Cases

 		
 Usage

 		
 Creating / Updating a MultiDirMap

 		
 Accepted Data Formats

 		
 Key Conflicts

 		
 Key Column Methods

 		
 Row Elements

 		
 Equality Testing

 		
 Ordering

 		
 Reordering the Secondary Key Columns

 		
 Sorting a MultiDirMap

 		
 Printing

 		
 Performance

 		
 Compared to dict

 		
 Compared to bidict

 		
 Compared to pandas DataFrame

 		
 Reference

 		
 multidirmap

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.2.0 (2019-07-12)

 		
 0.1.0 (2018-07-28)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

